MINIATURE CIRCUIT BREAKERS LTN-UC

- The series of circuit breakers for protection of direct current $(D C)$ and alternating current $(A C)$ circuits up to 63 A , DC 220 V (1-pole), DC 440 V (2-pole), AC $230 / 400 \mathrm{~V}$. In connection in $D C$ circuit it is mandatory to observe device polarity.
- For protection of cables and conductors against overload and short-circuit.
- Tripping characteristics C according to EN 60898-2.
- Breaking capacity 10 kA .

Circuit breakers for direct current (DC) and alternating current (AC) circuits, 1-pole

$\begin{gathered} \mathrm{I}_{\mathrm{n}} \\ {[\mathrm{~A}]} \\ \hline \end{gathered}$	Characteristic C		Number of modules	Weight [kg]	Package [pcs]
	Type	Order code			
1	LTN-UC-1C-1	OEZ:41846	1	0.182	12
2	LTN-UC-2C-1	OEZ:41847	1	0.186	12
4	LTN-UC-4C-1	OEZ:41848	1	0.177	12
6	LTN-UC-6C-1	OEZ:41849	1	0.165	12
8	LTN-UC-8C-1	OEZ:41850	1	0.181	12
10	LTN-UC-10C-1	OEZ:41851	1	0.184	12
13	LTN-UC-13C-1	OEZ:41852	1	0.182	12
16	LTN-UC-16C-1	OEZ:41853	1	0.157	12
20	LTN-UC-20C-1	OEZ:41854	1	0.180	12
25	LTN-UC-25-1	OEZ:41855	1	0.190	12
32	LTN-UC-32C-1	OEZ:41856	1	0.158	12
40	LTN-UC-40C-1	OEZ:41857	1	0.177	12
50	LTN-UC-50C-1	OEZ:41858	1	0.185	12
63	LTN-UC-63C-1	OEZ:41859	1	0.189	12

Circuit breakers for direct current (DC) and alternating current (AC) circuits, 2-pole

$\begin{gathered} \mathrm{I}_{\mathrm{n}} \\ {[\mathrm{~A}]} \\ \hline \end{gathered}$	Characteristic C		Number of modules	Weight [kg]	Package$[p, s]$
	Type	Order code			
1	LTN-UC-1C-2	OEZ:41860	2	0.329	6
2	LTN-UC-2C-2	OEZ:41861	2	0.319	6
4	LTN-UC-4C-2	OEZ:41862	2	0.315	6
6	LTN-UC-6C-2	OEZ:41863	2	0.317	6
8	LTN-UC-8C-2	OEZ:41864	2	0.333	6
10	LTN-UC-10C-2	OEZ:41865	2	0.333	6
13	LTN-UC-13C-2	OEZ:41866	2	0.338	6
16	LTN-UC-16C-2	OEZ:41867	2	0.341	6
20	LTN-UC-20C-2	OEZ:41868	2	0.341	6
25	LTN-UC-25C-2	OEZ:41869	2	0.317	6
32	LTN-UC-32C-2	OEZ:41870	2	0.340	6
40	LTN-UC-40C-2	OEZ:41871	2	0.339	6
50	LTN-UC-50C-2	OEZ:41872	2	0.354	6
63	LTN-UC-63C-2	OEZ:41873	2	0.365	6

Accessories

Auxiliary and signal switches	PS-LT, SS-LT	page B33
Shunt trips	SV-LT	page B34
Undervoltage releases	SP-LT	page B34
Locking inserts	OD-LT-VU01, OD-LT-VU02	page B35
Sealing insert	OD-LT-VP01	page B35
Interconnecting busbars	S1L, S2L, S3L, S4L	page B41
erminal extension	AS-50-S-AL01	page B43

MINIATURE CIRCUIT BREAKERS LTN-UC

Specifications

Type		LTN-UC
Standards		EN 60898-2
Approval marks		(5) C C EHI
Number of poles		1,2
Tripping characteristics		C
Rated current Rated operating voltage	I_{n}	$1 \div 63 \mathrm{~A}$
	$U_{\text {e }}$	AC $230 / 400 \mathrm{~V}$ DC 220 V (1pole), DC 440 V (2pole)
Max. operating voltage	$\mathrm{U}_{\text {max }}$	AC $250 / 440 \mathrm{~V}, \mathrm{DC} 250 \mathrm{~V} /$ protected pole
Min. operating voltage (1 pole)	$U_{\text {min }}$	AC/DC 24 V
Rated insulation voltage	U_{i}	AC $250 / 440 \mathrm{~V}, \mathrm{DC} 250 \mathrm{~V}$ / protected pole
Rated frequency	f_{n}	$50 / 60 \mathrm{~Hz}$
Rated short-circuit breaking capacity (EN 60898-2)	I_{n}	AC/DC 10 kA
Electrical endurance		10000 operating cycle , for 40, 50, 63 A 5000 operating cycles
Mechanical endurance		10000 operating cycles, for 40, 50, 63 A 5000 operating cycles
Energy limitation class		3
Mounting on "U" rail according to EN 60715 - type		TH35
Degree of protection - with connected conductors		IP20
Connection		
Conductor		see table Connection range
Screw head type		PZ2
Torque		max. 3.5 Nm
Top or bottom connection		top/bottom ${ }^{11}$
Operating conditions		
Ambient temperature	${ }^{\circ} \mathrm{C}$	$-25 \div+55^{\circ} \mathrm{C}$, max. 95% air humidity
Working position		arbitrary
Climatic resistance (EN 60068-2-30)		6 operating cycles
Shocks (EN 60068-2-27)	$\mathrm{m} / \mathrm{s}^{2}$	150 za 11 ms half-sine pulse
Resistance to sinusoidal vibration (EN 60068-2-6)	$\mathrm{m} / \mathrm{s}^{2}$	50 at $25 \div 150 \mathrm{~Hz}$ and 60 at $35 \mathrm{~Hz}(4 \mathrm{~s})$

${ }^{1 \text { 1) }}$ It is necessary to keep the connection polarity marked on the device in the DC circuits

Connection range

Front side of the terminal Barrier \qquad Rear side of the terminal			Type and conductor cross-section for rear side of the terminal														
				$\begin{aligned} & \tilde{E} \\ & \text { E } \\ & \text { O} \\ & \mu \\ & \text { N } \end{aligned}$		$\begin{aligned} & \text { E } \\ & \text { E } \\ & \text { W } \end{aligned}$									$\begin{aligned} & \text { Ē } \\ & \text { Ë } \\ & \text { ■ } \end{aligned}$		
	1 rigid conductor	$0.75 \div 16 \mathrm{~mm}^{2}$	\checkmark														
		$25 \mathrm{~mm}^{2}$	\checkmark	\checkmark	\checkmark	x	\checkmark										
		$35 \mathrm{~mm}^{2}$	\checkmark	\checkmark	x	x	\checkmark	\checkmark	\checkmark	x	\checkmark	\checkmark	\checkmark	\times	x	\checkmark	\times
	2 rigid conductors	$0.75 \div 10 \mathrm{~mm}^{2}$	\checkmark														
	1 flexible conductor ${ }^{1)}$	$1 \div 16 \mathrm{~mm}^{2}$	\checkmark														
	flexible conductor	$25 \mathrm{~mm}^{2}$	\checkmark	\checkmark	\checkmark	\times	\checkmark	\times	\checkmark	\checkmark							
	2 flexible conductors ${ }^{1)}$	$1 \div 6 \mathrm{~mm}^{2}$	\checkmark														
	1 flexible conductor with a sleeve	$0.75 \div 16 \mathrm{~mm}^{2}$	\checkmark	\checkmark	\checkmark	x	\checkmark										
	1 fiexible conductor with a sleeve	$25 \mathrm{~mm}^{2}$	\checkmark	\checkmark	\checkmark	\times	\checkmark	x	\checkmark	\checkmark							
	2 flexible conductors with a sleeve	$0.75 \div 6 \mathrm{~mm}^{2}$	\checkmark														

[^0]
MINIATURE CIRCUIT BREAKERS LTN-UC

Internal impedance \mathbf{Z}, powers losses P, impedance of fault loop Z_{s}

$\begin{aligned} & I_{n} \\ & {[A]} \end{aligned}$	$\begin{gathered} Z^{11} \\ {[\mathrm{~m} \Omega / \text { pole] }} \end{gathered}$	$\begin{gathered} P^{11} \\ {[W / \text { pole }} \end{gathered}$	Max. impedance of fault loop TN $\mathrm{Z}_{s}[\Omega]^{2)}$			
			DC network		AC network ${ }^{3)}$	
			$\mathrm{t} \leq 5 \mathrm{~s}$ (for $\mathrm{U}_{0} 220 \mathrm{~V} \mathrm{DC}$)	$t \leq 0,1 \mathrm{~s}$ (for $\mathrm{U}_{0} 440 \mathrm{VDC}$)	$\mathrm{t} \leq 0,4 \mathrm{~s}$ (for $\mathrm{U}_{0} 230 \mathrm{~V} \mathrm{AC}$)	$\mathrm{t} \leq 5 \mathrm{~s}$ (for $\mathrm{U}_{0} 230 \mathrm{~V} \mathrm{AC}$)
1	1210	1.2	35.4	29.3	23.0	37.0
2	295	1.2	17.7	14.7	11.5	18.5
4	81	1.3	8.8	7.3	5.8	9.2
6	44	1.6	5.9	4.9	3.8	6.2
8	14	0.9	4.4	3.7	2.9	4.6
10	10	1.0	3.5	2.9	2.3	3.7
13	8	1.4	2.7	2.3	1.8	2.8
16	5.9	1.5	2.2	1.8	1.4	2.3
20	4	1.6	1.8	1.5	1.2	1.8
25	3.3	2.1	1.4	1.2	0.9	1.5
32	2.4	2.5	1.1	0.92	0.7	1.2
40	2.1	3.3	0.9	0.73	0.6	0.92
50	1.4	3.5	0.7	0.59	0.5	0.74
63	1.1	4.4	0.6	0.47	0.4	0.59

${ }^{1)}$ Average values per protected pole
${ }^{2)}$ According to EN60364-4-41
${ }^{3)}$ If the measured value exceeds the table value, we recommend to use residual current circuit breaker

Correction of rated current I_{n}

Correction of circuit breaker rated current I_{n} is determined by relation $\mathrm{I}_{\mathrm{n} 1}=\mathrm{K}_{\mathrm{T}} \times \mathrm{K}_{N} \times \mathrm{I}_{n}$ where:
$I_{n 1} \ldots$ is corrected rated current of the circuit breaker
$I_{n} \ldots$ is rated current of the circuit breaker (i.e. the one placed separately at reference temperature $30^{\circ} \mathrm{C}$)
$\mathrm{K}_{\mathrm{T}} \ldots$ is correction factor taking ambient temperature into account
$K_{N} \ldots$ is correction factor taking into account placement of more loaded circuit breakers side-by-side

1) Correction factor K_{T}

For concrete circuit breaker type (I_{n}, , , curve number (1,2 or 3) in the table, and using the correction curve number and given ambient temperature on the graph, determine correction factor K_{T}

Characteristic	$\begin{aligned} & \text { Number } \\ & \text { pole } \end{aligned}$	Rated current of the circuit breaker $\mathrm{I}_{\mathrm{n}}[\mathrm{A}]$													
		1	2	4	6	8	10	13	16	20	25	32	40	50	63
		Correction curve number													
C	1.2	2	2	3	3	3	3	2	3	3	2	2	3	2	3

Correction factor KT depending on ambient temperature

2) Correction factor K_{N}

Determine correction factor K_{N} according to the number of circuit breakers placed side-by-side.

Correction factor KN for circuit breakers placed side-by-side				
Number of LTN-UC circuit	1	$2 \div 3$	$4 \div 6$	>7
breakers side-by-side	1.00	0.90	0.88	0.85
Correction factor K K_{N}				

Example

Task:
how rated current $I_{n}=32 \mathrm{~A}$ will change for circuit breaker LTN-UC-32C-1 at ambient temperature $10^{\circ} \mathrm{C}$ and for 4 circuit breakers placed side-by-side?

Determination of K_{T} : for characteristic C, number of poles 1 , and $I_{n} 32 \mathrm{~A}$, it is possible to take correction curve No. 2 from the table. For intersection of the correction curve No. 2 and ambient temperature $10^{\circ} \mathrm{C}$ it is possible to determine correction factor $\mathrm{K}_{\mathrm{T}}=1.09$ on the vertical scale of the graph.

Determination of K_{N} : for 4 circuit breakers LTN-UC-32C-1 placed side-by-side it is possible to determine from the table correction factor $K_{N}=0.88$

Correction I_{n} : new rated current
$\mathrm{I}_{\mathrm{n} 1}=\mathrm{K}_{\mathrm{T}} \times \mathrm{K}_{\mathrm{N}} \times \mathrm{I}_{\mathrm{n}}=1.09 \times 0.88 \times 32 \mathrm{~A}=30.69 \mathrm{~A}$

MINIATURE CIRCUIT BREAKERS LTN-UC

Correction of tripping characteristic depending on frequency

- Reference frequency: 50 Hz

Thermal release

I_{n}	Correction factor					
$[\mathrm{A}]$	0 Hz	$162 / 3 \mathrm{~Hz}$	50 Hz	125 Hz	400 Hz	1000 Hz
$1 \div 10$	1	1	1	1	0.99	0.97
$13 \div 40$	1	1	1	0.98	0.97	0.93
$50 \div 63$	1	1	1	0.97	0.92	0.85

Example:

- For circuit breaker LTN-UC-50C-2 in a circuit with frequency of 125 Hz , rated current is
corrected: $\mathrm{I}_{\mathrm{n}}=50 \times 0.97=48.5 \mathrm{~A}$. For characteristic C , range of electromagnetic release switching is changed to $1.2 \times(5 \div 10) \mathrm{I}_{\mathrm{n}}=(6 \div 12) \mathrm{I}_{\mathrm{n}}$
- For circuit breaker LTN-UC-2OC-1 in DC current (frequency 0 Hz), rated current is unchanged: $I_{n}=20 \times 1=20 \mathrm{~A}$. For characteristic C , range of electromagnetic release switching is changed to $1.4 \times(5 \div 10) I_{n}=(7 \div 14) I_{n}$

Dimensions

LTN-UC-..-1

Electromagnetic release
I_{n}
$[\mathrm{A}]$ OHz

LTN-UC-..-2

Diagram

LTN-UC-..-1
LTN-UC-..-2

Minia

LTN-UC

MINIATURE CIRCUIT BREAKERS LTN-UC

Characteristics LTN-UC in DC circuit

Characteristics LTN-UC in AC circuit

- Characteristic C : for protection of line of electrical circuits with equipment, which causes current surges.

Tripping characteristics of circuit breakers according to EN 60898-2

Thermal release	Tripping characteristic type	
	C	
Conventional non-tripping current	I_{nt} for $t \geq 1 \mathrm{hr}$	$\mathrm{I}_{\mathrm{nt}}=1.13 \mathrm{I}_{\mathrm{n}}$
Conventional tripping current	I_{t} for $\mathrm{t}<1 \mathrm{hr}$	$\mathrm{I}_{\mathrm{t}}=1.45 \mathrm{I}_{\mathrm{n}}$
Current I_{3} for	$1 \mathrm{~s}<\mathrm{t}<60 \mathrm{~s}$	$\left(\right.$ for $\left.\mathrm{I}_{\mathrm{n}} \leq 32 \mathrm{~A}\right)$
$\mathrm{I}_{3}=2.55 \mathrm{I}_{\mathrm{n}}$		

t - break time of the circuit breaker

Electromagnetic release		Characteristic \mathbf{C}	
		DC circuit	AC circuit
Current I_{4} for	$0.1 \mathrm{~s}<\mathrm{t}<15 \mathrm{~s}$	$\left(\right.$ for $\left.\mathrm{I}_{\mathrm{n}} \leq 32 \mathrm{~A}\right)$	$\mathrm{I}_{4}=7 \mathrm{I}_{\mathrm{n}}$
	$0.1 \mathrm{~s}<\mathrm{t}<30 \mathrm{~s}$	$\left(\right.$ for $\left.\mathrm{I}_{\mathrm{n}}>32 \mathrm{~A}\right)$	$\mathrm{I}_{4}=5 \mathrm{I}_{\mathrm{n}}$
Current I_{5} for	$\mathrm{t}<0.1 \mathrm{~s}$		$\mathrm{I}_{5}=15 \mathrm{I}_{\mathrm{n}}$
t - break	$\mathrm{I}_{5}=10 \mathrm{I}_{\mathrm{n}}$		

t - break time of the circuit breaker

MINIATURE CIRCUIT BREAKERS LTN-UC

Characteristics $1^{2} \mathbf{t}$

Protection of DC circuits

For protection of $D C$ circuits it is possible to use LTN-UC, LTP,
LTS, LVN, LST-DC circuit breakers depending on voltage.

Miniature circuit breaker		DC voltage
Type	$\mathrm{I}_{0}[\mathrm{~A}]$	
LTN-UC-..-1 ${ }^{1)}$	do 63 A	DC220V
LTN-UC-..-2 ${ }^{1)}$	do 63 A	DC440V
LST-DC-..-2 ${ }^{11}$	do 125 A	DC440V
LTP,LTS-..-1	do 63 A	DC60V
LTP,LTS-..-2	do 63 A	DC 120V
LTP,LTS-...3	do 63 A	DC 180 V
LVN-..-1	do 125 A	DC72V
LVN-..-3	do 125 A	DC216V
LVN-...4	do 125 A	DC 288 V

Correct polarity connection of DC circuit breakers, loads etc. in the circuit has to follow the direction of current flow in DC circuit that is from (+) to (-).

Example of current flow according to polarity is shown by the arrow:

1) Correct connection of devices
= equal direction of current flow on the devices

2-pole connection of LTN-UC

2) Wrong connection of devices

= contradictory current flow on the devices

[^1]
ACCESSORIES

${ }^{1)}$ Each digit indicates successively the number of make and break contacts

Signal switches

- Accessory to:
- miniature circuit breakers LTP, LTS, LVN, LTN-UC
- residual current circuit breakers: LFN, LFE
- For position signalling of main contacts of the device in switching off by releases, i.e. in switching off by overload, short-circuit, shunt trip and undervoltage release or residual current.
- Mounting:
- on the right side of the device
- 2 signal switches can be connected to one device in combination with the other accessories - see page B40.
- Auxiliary switch function can be checked by test lever on the front side of the device (version SS-..-TE).
- Signal switch can be reset by means of the red reset lever on the front side of the device without switching the device on by the control lever (version SS-..-RE).
- They are suitable for application in SELV and PELV circuits - sufficient insulation is provided between the circuit breaker and the signal switch

Design	Arrangement of contacts ${ }^{11}$	Type	Order code	Number of modules	Weight $[\mathrm{kg}]$	Package $[\mathrm{pcs}]$
Standard	11	SS-LT-1100	OEZ:42306	0.5	0.065	1
	20	SS-LT-2000	OEZ:42307	0.5	0.075	1
	02	SS-LT-0200	OEZ:42308	0.5	0.078	1
	11	SS-LT-1100-TE-RE	OEZ:42309	0.5	0.055	1
	20	SS-LT-2000-TE-RE	OEZ:42310	0.5	0.057	1

[^2]
ACCESSORIES

Undervoltage releases

- Accessory to:
- miniature circuit breakers LTS, LVN, LTN-UC
- residual current circuit breakers: LFN, LFE
- They are used for tripping the device at loss of voltage as well as at gradual decrease of voltage.
- They are used for elimination of closing of circuit breaker if voltage is lower than $35 \% \mathrm{U}_{\mathrm{c}}$ (switching is possible at voltage higher than 85% U).
- They are often used for protection against device restart following mains failure.
- Mounting:
- on the right side of the device
- one undervoltage release can be connected to one device in combination with the other accessories - see page B40.

Rated voltage U_{c}	Arrangement of contacts ${ }^{11}$	Type	Order code	Number of modules	$\begin{gathered} \text { Weight } \\ {[\mathrm{kg}]} \\ \hline \end{gathered}$	Package [pcs]
AC 230 V	-	SP-LT-A230	0EZ:42315	1	0.109	1
	20	SP-LT-A230-2000	OEZ:42317	1	0.123	1
DC24V	-	SP-LT-D024	0EZ:42319	1	0.113	1
	20	SP-LT-D024-2000	OEZ:42321	1	0.117	1
DC110V	-	SP-LT-D110	0EZ:42320	1	0.105	1
	20	SP-LT-D110-2000	0EZ:42322	1	0.128	1

[^3]
Minia

ACCESSORIES

Locking insert OD-LT-VU01

- Accessory to:
- miniature circuit breakers LVN, LTN-UC
- residual current circuit breakers: OLI, OLE
- switches: AVN-DC
- For safe locking of the control lever in off or on position.

The protective function of the devices is functional even in locked position.

- Maximum diameter of lock rod -3 mm .
- The lock is not included in the package.

Type	Order code	Weight $[\mathrm{kg}]$	Package $[\mathrm{pcs}]$
$\mathbf{O D - L T - V U 0 1 ~}$	OEZ:42324	0.012	1

Locking insert OD-LT-VU02

- Accessory to:
- miniature circuit breakers: LTP, LTS,LVN, LTN-UC
- residual current circuit breakers: OLI, OLE, LFN, LFE
- switches: MSO, AVN-DC
- For safe locking of the control lever in off or on position.
- The protective function of the devices is functional even in locked position.
- Maximum diameter of lock rod -6 mm .
- The lock is not included in the package.
- In installation it is necessary to press the fixing springs of the insert by two fingers against each other, and then slide them in the holes in the circuit breaker. In case of pressing the insert against the circuit breaker body a part of the plastic cover could break off!

Type	Order code	Weight $[\mathrm{kg}]$	Package $[\mathrm{pcs}]$
$\mathbf{O D - L T - V U 0 2 ~}$	$0 \mathrm{EZ}: 42325$	0.003	1

Sealing insert 0D-LT-VP01

- Accessory to:
- miniature circuit breakers LTP, LTS, LVN, LTN-UC
- residual current circuit breakers: OLI, OLE
- switches: MSO, AVN-DC
- For covering and sealing of terminal screws.

Type	Order code	Weight $[\mathrm{kg}]$	Package $[\mathrm{pcs}]$
$\mathbf{0 D - L T - V P 0 1 ~}$	OEZ:42323	0.002	1

Minia

ACCESSORIES

Specifications of auxiliary and signal switches

Type				$\begin{aligned} & \text { PS-LT } \\ & \text { SS-LT } \end{aligned}$	PS-LT-1100-MN PS-LT-1100-MN-TE
Standards				EN 60947-5-1	EN 60947-5-1
				EN 62019	EN 62019
Approval marks				(5) C C Eil	(5) C C E[IL
Arrangement of contacts ${ }^{17}$				11,20,02	11,20,02
Rated operating voltage/current	$U_{e} / I_{\text {e }}$	AC-13	400 V	2 A	-
			230 V	6A	-
		AC-14	400 V	2 A	-
			230 V	6A	-
		DC-13	220 V	1A	-
			110 V	1A	-
			60 V	3 A	-
			24 V	6A	-
Max. voltage/current				-	DC $30 \mathrm{~V} / 50 \mathrm{~mA}$
Min. voltage/current				$24 \mathrm{~V} / 50 \mathrm{~mA}$	DC5V/1mA
Backup protection - fuse / miniature circuit breaker				$6 \mathrm{AgG} / 6 \mathrm{~A}$ characteristic B, C	$6 \mathrm{AgG} / 6 \mathrm{~A}$ characteristic B, C
Mechanical endurance				10000 operating cycles	10000 operating cycles
Electrical endurance at $I_{\text {e }}$				10000 operating cycles	10000 operating cycles
Degree of protection				IP20	IP20
Connection					
Conductor Cu rigid (solid, stranded)				$0.5 \div 2.5 \mathrm{~mm}^{2}$	$0.5 \div 2.5 \mathrm{~mm}^{2}$
Conductor Cu flexible				$0.5 \div 2.5 \mathrm{~mm}^{2}$	$0.5 \div 2.5 \mathrm{~mm}^{2}$
Torque				0.5 Nm	0.5 Nm
Connection				top/bottom	top/bottom
Operating conditions					
Ambient temperature				$-25 \div+55^{\circ} \mathrm{C}$	$-25 \div+55^{\circ} \mathrm{C}$
Working position				arbitrary	arbitrary
Climatic resistance dle IEC 60068-2-30				28 operating cycles	28 operating cycles
Shocks (EN 60068-2-27)	$\mathrm{m} / \mathrm{s}^{2}$			150 za 11 ms half-sine pulse	150 za 11 ms half-sine pulse
Vibration resistance according to 60068-2-6	$\mathrm{m} / \mathrm{s}^{2}$			50 at $10 \div 150 \mathrm{~Hz}$	50 at $10 \div 150 \mathrm{~Hz}$

${ }^{1)}$ Each digit indicates successively the number of make and break contacts

ACCESSORIES

Specifications of shunt trips and undervoltage releases

Type			SV-LT	SP-LT
Standards			EN 60947-1	EN 60947-1
Approval marks			(5) C C [il	(5) C C ERI
Mounting			on the right side of the device	on the right side of the device
Degree of protection			IP20	IP20
Control circuit coil				
Rated voltage	$U_{\text {c }}$		AC/DC $24 \div 60 \mathrm{~V}$	AC 230 V
			AC $110 \div 415 \mathrm{~V} / \mathrm{DC} 110 \mathrm{~V}$	DC $24,110 \mathrm{~V}$
Range of rated voltage			$0.7 \div 1.1 U_{\text {c }}$	$0.85 \div 1.1 \mathrm{U}_{\text {c }}$
Voltage range for switching off			-	$<0.35 \div 0.7 \mathrm{U}_{\text {c }}$
Rated frequency	f_{n}		$50 / 60 \mathrm{~Hz}$	$50 / 60 \mathrm{~Hz}$
Backup protection - fuse / miniature circuit breaker			$6 \mathrm{AgG} / 6 \mathrm{~A}$ characteristic B, C	$6 \mathrm{~A} \mathrm{gG} / 6 \mathrm{~A}$ characteristic B, C
Contact				
Arrangement of contacts ${ }^{11}$			-	20
Rated operating voltage/current	$U_{e} / l_{\text {e }}$	AC-1	-	$230 \mathrm{~V} / 6 \mathrm{~A}$
Min. voltage/current			-	$24 \mathrm{~V} / 50 \mathrm{~mA}$
Backup protection - fuse / miniature circuit breaker			-	$6 \mathrm{AgG} / 6 \mathrm{~A}$ char. B, C
Connection				
Conductor Cu rigid (solid, stranded)			$0.5 \div 2.5 \mathrm{~mm}^{2}$	$0.5 \div 2.5 \mathrm{~mm}^{2}$
Conductor Cu flexible			$0.5 \div 2.5 \mathrm{~mm}^{2}$	$0.5 \div 2.5 \mathrm{~mm}^{2}$
Torque			0.8 Nm	0.8 Nm
Connection			top/bottom	top/bottom
Operating conditions				
Mechanical endurance			10000 operating cycles	10000 operating cycles
Electrical endurance			2000 operating cycles	2000 operating cycles
Ambient temperature			$-25 \div+55^{\circ} \mathrm{C}$	$-25 \div+55^{\circ} \mathrm{C}$
Working position			arbitrary	arbitrary
Climatic resistance according to IEC 60068-2-30			28 operating cycles	28 operating cycles
Shocks (EN 60068-2-27)	$\mathrm{m} / \mathrm{s}^{2}$		50 za 11 ms half-sine pulse	50 za $11 \mathrm{~ms} \mathrm{half-sine} \mathrm{pulse}$
Vibration resistance according to IEC 60068-2-6	$\mathrm{m} / \mathrm{s}^{2}$		50 at $10 \div 150 \mathrm{~Hz}$	50 at $10 \div 150 \mathrm{~Hz}$

${ }^{1)}$ Each digit indicates successively the number of make and break contacts

ACCESSORIES

Dimensions

PS-LT, SS-LT

SV-LT

SP-LT

LTN-UC, LVN + OD-LT-VU01 + OD-LT-VP01

LTN-UC, LVN + OD-LT-VU02

LTP, LTS + OD-LT-VU02

ACCESSORIES

Diagram

PS-LT-1100

1422

PS-LT-2000

$14 \quad 24$

PS-LT-0200

$12 \quad 22$

SS-LT-1100

1422

SS-LT-0200

$12 \quad 22$

PS-LT-1100-TE

$14 \quad 22$

PS-LT-2000-TE

PS-LT-0200-TE

$12 \quad 22$

SP-LT-..-2000

SV-LT-..

SP-LT

D2

SS-LT-1100-TE-RE

$14 \quad 22$

SS-LT-2000
$14 \quad 24$

SS-LT-2000-TE-RE

SS-LT-0200-TE-RE
$14 \quad 24$
$12 \quad 22$

Installation of auxiliary switch, shunt trips or undervoltage releases

For installation of an auxiliary switch, shunt trip or undervoltage releases on a circuit breaker, residual current circuit breaker or switch, the same procedure shall apply as described on the example of installation of the auxiliary switch on the circuit breaker in the following points.

1. In mounting the levers of auxiliary switch and of the circuit breaker are in OFF position.
2. Tilt both fixing springs of the auxiliary switch to the right so that they do not get between the auxiliary switch and circuit breaker in installation.
3. Slide the auxiliary switch onto the circuit breaker from the right.
4. Lock the fixing springs in the circuit breaker body so that the auxiliary switch cannot release.
5. Check correct function by switching.

ACCESSORIES

Combination of accessories

[^0]: ${ }^{1)}$ The conductor must be twisted before insertion to a terminal; individual conductor fibres must not stick out of the terminal Conductors of the same type and cross-section must be used for connection of two conductors to the same level of a terminal
 \checkmark the stated connection combination is possible
 x the stated connection combination is not possible

[^1]: The correct connection of devices (point 1) seems to be illogical due to connection of load terminal (+) and circuit breaker terminal (-). However, it is correct connection.

[^2]: ${ }^{1)}$ Each digit indicates successively the number of make and break contacts

[^3]: ${ }^{1)}$ Each digit indicates successively the number of make and break contacts

